Dehydration of (H_3O) ₂ $B_{10}H_{10}$: an Improved Preparation of Icosaborane Oxide, $(B_{10}H_{13})_2O$

B. BONNETOT, A. TANGI, M. COLOMBIER and H. MONGEOT

Laboratoire de Physicochimie Minérale Associé au CNRS *No I 16, Universitd Claude Bernard, Lyon I, 43 Boulevard du I I novembre I91 8, F 69622 Villeurbanne Cedex, France*

Received July 26, 1985

 $6,6'$ -bis(nido-decaboranyl)oxide, $B_{10}H_{13}OB_{10}H_{13}$, was originally obtained [l] by reaction of 6,9-bis(dialkyl sulphido) dodecahydrodecaborane, $B_{10}H_{12}(R_2 S_2$ (R = CH₃ or C₂H₅), with sulphuric acid. It has been shown in more recent work [2] that 6-hydroxynido-decaborane, $B_{10}H_{13}OH$, is formed in addition to $(B_{10}H_{13})_2O$. The structure of $(B_{10}H_{13})_2O$ has been determined by X-ray $[3]$ and 11 B NMR $[4]$. This compound is extremely resistant towards inorganic acids and their halogenides. It has been shown recently [2] that it can be used to prepare new clusters containing boron and metals such as nickel, palladium and platinum.

To our knowledge, the formation of $(B_{10}H_{13})_2O$ by dehydration of $(H_3O)_2B_{10}H_{10}$ has never been reported. $(H_3O)_2B_{10}H_{10}$ is a strong acid; hydrates such as $H_2B_{10}H_{10} \cdot 4H_2O$ and $H_2B_{10}H_{10} \cdot 2H_2O$ have been characterized during the dehydration [S]. Further drying has given a solid residue from which a compound of formula $B_{10}H_{14}O$ has been isolated by sublimation under vacuum. According to our results, it is probable that this compound was $6 - B_{10}$ - $H_{13}OH$.

Results and Discussion

 $(B_{10}H_{13})_2O$ is obtained with a 60% yield by dehydration of an easily available material, $(H_3O)_2$ - $B_{10}H_{10}$, prepared by ion exchange from $B_{10}H_{10}$ salts. Starting from the acidic solution, the first stage is the formation of $6-B_{10}H_{13}OH$ by evaporation of water under vacuum; benzene is then added to the reaction mixture and it dissolves the $6-B_{10}H_{13}OH$. Benzene is evaporated in the second stage; the residue is a white solid from which $6.6'$ - $(B_{10}H_{13})$ -O can be extracted with hexane at room temperature.

Although the preparation of $(B_{10}H_{13})_2O$ from $B_{10}H_{12}(R_2S_2)$ and from $(H_3O)_2B_{10}H_{10}$ is very different, the mechanisms leading to the final product appear to be similar. It has been shown [2] that $B_{10}H_{13}OH$ is an intermediate which reacts with B_{10} - $H_{12}(Et_2 S)$ to give the oxide. It has also been demon-

strated that the conversion of the hydroxide to the oxide does not take place, even in the presence of H_2 - SO_4 or P₄O₁₀. In our case, the reaction of B₁₀H₁₃OH

with a bis-ligand seems also the best way to account for the results, the bis-ligand being here $B_{10}H_{12}$. $(H₂O)₂$. The formation of $6-B_{10}H_{13}OH$ must be related

to the general case of opening the $B_{10}H_{10}^2$ - cage in acidic medium; $B_{10}H_{12}(R_2S)$ ₂ [6, 7] and $B_{10}H_{14}$ [8] can be prepared under these conditions. Addition occurs always in positions 6 and 9 and the reaction can be written

$$
(H_3O)_2B_{10}H_{10} \longrightarrow 6-B_{10}H_{13}OH + H_2O
$$

 $6.9 - B_{10}H_{12}(H_2O)_2$ can be obtained by the same process. This compound has never been characterized but its existence has been postulated [9] ; it is supposed to be the main intermediate in the formation of $B_{10}H_{12}(R_2S)$ from $(H_3O)_2B_{10}H_{10}$ and R_2S . One possibility is that $B_{10}H_{12}(H_2O)_2$ is present in low concentration because of the equilibrium

$$
(H_3O)_2B_{10}H_{10} \rightleftharpoons B_{10}H_{12}(H_2O)_2
$$

 $6.6'$ - $(B_{10}H_{13})$ ₂O should be formed by the reaction

 $B_{10}H_{13}OH + B_{10}H_{12}(H_2O)_2 \longrightarrow (B_{10}H_{13})_2O + 2H_2O$

Experimental

General

Except for the aqueous solution, the products were handled in a glove box in an argon atmosphere. $11B$ NMR spectra were recorded on a XL-100 Varian instrument, IR spectra on a 457 Perkin Elmer instrument and Raman spectra on a PHO Coderg spectrometer equipped with a Spectra Physics argon laser emitting at 5 14.5 nm. X-ray diffraction patterns were measured on a Philips powder chamber of 360 mm diameter. Melting point was determined on a Setaram DSC 111 instrument.

Synthesis

3 g of $(Et_4N)_2B_{10}H_{10}$ prepared by pyrolysis of Et_4NBH_4 according to a published method [10] were dissolved in 15 $cm³$ of water. The solution was passed through a column containing 200 cm³ of a strong acid ion exchange resin (Duolite C 20 H). The acidic solution was collected and its volume was reduced to 5 $cm³$ at room temperature in a rotating evaporator connected to a water aspirator. The remaining water was evaporated under vacuum, without heating, in a vessel equipped with magnetic stirrer. We stopped pumping when a yellow product

0020-1693/85/\$3.30 0 Elsevier Sequoia/Printed in Switzerland

was obtained (the pressure in the reaction vessel was 10^{-6} torr). Then 15 cm³ of benzene were added to this product and the mixture was stirred; $6-B_{10}H_{13}OH$ was the only boron compound present in the benzene solution. Benzene was evaporated at 10^{-3} torr and new fractions of benzene $(3 \times 10 \text{ cm}^3)$ were added and evaporated under the same conditions. The white solid thus obtained was extracted with n-hexane $(3 \times$ 10 cm^3) at room temperature, and 0.61 g of crude $(B_{10}H_{13})_2$ O were obtained (60% yield). The solid was sublimed at 10^{-6} torr and $100-110$ °C. ¹¹B NMR spectra of the product dissolved in n-hexane were the same before and after sublimation.

Characterization

The 11 B NMR spectra of $6-B_{10}H_{13}OH$ (singlet at 6.9 ppm and doublets at 15.1,33.3,5 1.1 and 62.6 ppm with $B(OMe)_3$ as external standard) were in complete agreement with published data [2] ; the IR spectra exhibited a band at 3570 cm^{-1} assignment to the OH stretching vibration [2] .

 $(B_{10}H_{13})_2O$ was also easily characterized from published data concerning X-ray $[1, 3]$, IR $[1]$ and 11 B NMR [2] (we obtained a singlet at -2.9 ppm and doublets at 13.2, 30.1, 52.4 and 61.5 ppm). Elemental analysis gave a 0.12 H:B ratio (calculated 0.12). The Raman spectrum of the solid was scanned in the range 100 cm^{-1} -3000 cm⁻¹. The main lines were: 154(w), 225(w), 366(w), 400(w), 472(w), 560(w), 585(w), 637(m), 71O(vs), 720(m), 755(m), 769(w), 849(w), 863(s), 880(w), 907(w), 960(w), 1025(w), 1078(w), 1500(w), 1885(w,br), 1906(m,br), 1925(m,br), 1970(m,br), 2055 (m,br), 2539(s), 2550(s) and 258O(vs). The B-H-B bridges were easier to characterize by Raman scattering than by IR. The frequencies of the corresponding stretching vibrations are in the $1850-2100$ cm⁻¹ range; only weak and broad bands appeared by IR at 1900 and 1980 cm^{-1} .

The melting point of sublimed $6-(B_{10}H_{13})_2O$ was determined by DSC in stainless steel crucibles sealed in a dry argon atmosphere. No change was observed by use of different scanning speeds (2" per min or 5° per min). The maximum position of the melting peak was at 137 °C which is in good agreement with published results $(139-140 \degree C)$ [1, 2]. However, a usual melting point determination by DSC produced a value of 132° C for this point. This temperature is more correct for consideration but it cannot be compared with the melting points determined in open air capillary tubes.

References

- 1 S. Hermanek, J. Plesek and B. Stibr, *Collect. Czech. Chem. Commun., 33, 691 (1968).*
- *2 N. N.* Greenwood, M. J. Hails, J. D. Kennedy and W. S. McDonaJd,J. *Chem. Sot., Dalton Trans., 953 (1985).*
- *3 N. N.* Greenwood, W. S. McDonald and T. R. Spalding, J. *Chem. Sot., Chem.* Commun., 1251 (1980).
- *4* J. D. Kennedy and N. N. Greenwood, *Inorg. Chim. Acta, 38, 93 (1980).*
- *5 E.* L. Muetterties, J. H. Balthis, Y. T. Chia, W. H. Knoth and H. C. Miller, *Inorg. Chem., 3, 445 (1964).*
- *6* M. D. Marshall, R. M. Hunt, G. T. Hefferan, R. M. Adams and J. M. Makhlouf, *J. Am. Chem. Sot., 89, 3361 (1967).*
- *7* G. Guillevic, J. Dazord, H. Mongeot and J. Cueillero, *J. Chem. Res. (S), 402 (1978).*
- *8* H. Mongeot and H. R. Atchekzai, Z. *Naturforsch.,* TeilB:, 36, 313 (1981).
- *9* Wang Guang-Chang, Lii Yi-Xin and Dai Li-Xin, Huang Xiu *Yun,Acta.Chim. Sinica, 39, 251 (1981).*
- 10 G. Guillevic, J. Dazord, H. Mongeot and J. Cueilleron *Chem. Res., 4864 (1978).*